3.5 数组间运算
学习目标
目标
- 说明数组间运算的广播机制
- 知道数组与数之间的运算
- 知道数组与数组之间的运算
- 理解矩阵的特点以及运算规则
- 应用np.matmul实现矩阵运算
应用
学生综合成绩矩阵运算
3.5.1 场景
数据:
[[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
3.5.2 数组与数的运算
arr = np.array([[1, 2, 3, 2, 1, 4], [5, 6, 1, 2, 3, 1]])
arr + 1
arr / 2
# 可以对比python列表的运算,看出区别
a = [1, 2, 3, 4, 5]
a * 3
3.5.3 数组与数组的运算
arr1 = np.array([[1, 2, 3, 2, 1, 4], [5, 6, 1, 2, 3, 1]])
arr2 = np.array([[1, 2, 3, 4], [3, 4, 5, 6]])
上面这个能进行运算吗,结果是不行的!
3.5.4 广播机制
执行 broadcast 的前提在于,两个 ndarray 执行的是 element-wise的运算,Broadcast机制的功能是为了方便不同形状的ndarray(numpy库的核心数据结构)进行数学运算。
当操作两个数组时,numpy会逐个比较它们的shape(构成的元组tuple),只有在下述情况下,两个数组才能够进行数组与数组的运算。
- 维度相等
- shape(其中相对应的一个地方为1)
例如:
Image (3d array): 256 x 256 x 3
Scale (1d array): 3
Result (3d array): 256 x 256 x 3
A (4d array): 9 x 1 x 7 x 1
B (3d array): 8 x 1 x 5
Result (4d array): 9 x 8 x 7 x 5
A (2d array): 5 x 4
B (1d array): 1
Result (2d array): 5 x 4
A (2d array): 15 x 3 x 5
B (1d array): 15 x 1 x 1
Result (2d array): 15 x 3 x 5
如果是下面这样,则不匹配:
A (1d array): 10
B (1d array): 12
A (2d array): 2 x 1
B (3d array): 8 x 4 x 3
思考:下面两个ndarray是否能够进行运算?
arr1 = np.array([[1, 2, 3, 2, 1, 4], [5, 6, 1, 2, 3, 1]])
arr2 = np.array([[1], [3]])
3.5.5 矩阵运算
现在再次回到最开始的学生成绩问题:
思考:如何能够直接得出每个学生的成绩?
1 什么是矩阵
矩阵,英文matrix,和array的区别矩阵必须是2维的,但是array可以是多维的。
- np.mat()
- 将数组转换成矩阵类型
a = np.array([[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]])
b = np.array([[0.7], [0.3]])
np.mat(a)
2 矩阵乘法运算
矩阵乘法的两个关键:
- 形状改变
- 运算规则
形状改变:
必须符合上面的式子,否则运算出错。
运算规则:
矩阵乘法api:
- np.matmul
- np.dot
>>> a = np.array([[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]])
>>> b = np.array([[0.7], [0.3]])
>>> np.matmul(a, b)
array([[81.8],
[81.4],
[82.9],
[90. ],
[84.8],
[84.4],
[78.6],
[92.6]])
>>> np.dot(a,b)
array([[81.8],
[81.4],
[82.9],
[90. ],
[84.8],
[84.4],
[78.6],
[92.6]])
3 矩阵应用场景
大部分机器学习算法需要用到